
Altered States Documentation
Release 0

Jacob Oscarson <jacob@plexical.com>

May 15, 2013

CONTENTS

i

ii

Altered States Documentation, Release 0

Altered States is a way to simplify monkey patching and make it more accessible. It was written with test fixture setup
in mind but can be used for anything that needs a reversible and temporary drastic state change (switching between
authenticated users, I/O redirection, probably more).

CONTENTS 1

http://en.wikipedia.org/wiki/Monkey_patch

Altered States Documentation, Release 0

2 CONTENTS

CHAPTER

ONE

API

There are two ways to manipulate your world.

1.1 state

For quick state changes, use the state() function by way of a context manager (with statement):

>>> from altered import state
>>> class Anon(object): pass
>>> o = Anon()
>>> o.foo = ’foo’
>>> with(state(o, foo=’bar’)):
... print o.foo
bar

or using the same function as a a decorator:

>>> from altered import state
>>> struct = {’a’: 1}
>>> @state(struct, a=3)
... def fn():
... return struct[’a’]
>>> fn()
3

This example also shows how state() can be applied to dict as well as objects.

1.2 alter/restore

(This feature is available from version ‘0.8.5‘).

If you need the state to be in effect for a bit longer, use the two-step procedure by calling alter(). It returns another
function that will perform the restoration at a later time:

>>> from altered import alter, E
>>> o = E(foo=’foo’)
>>> restore = alter(o, foo=’bar’)
>>> print(o.foo)
bar
>>> restore()
>>> print(o.foo)
foo

3

Altered States Documentation, Release 0

It also takes dict -like objects in the same way that state() does.

Contents:

1.2.1 Examples

Here are some examples to get you started on usage of Altered States:

I/O redirection

>>> import sys
>>> from StringIO import StringIO
>>> from altered import state
>>> buf = StringIO()
>>> with(state(sys, stdout=buf)):
... print ’foo’
>>> buf.getvalue()
’foo\n’

Faking an import

>>> import sys
>>> from altered import state, Expando
>>> with(state(sys.modules, fakey=Expando(foo=’bar’))):
... import fakey
... print fakey.foo
bar

In-place patching

Module scope

>>> @state(globals(), injected=’foo’)
... def fn():
... return injected
>>> fn()
’foo’

Local scope

>>> from altered import state, E
>>> with state(vars(), injected=’foo’):
... print injected
foo

Deny the existance of a module

It’d be much better if it would raise ‘ImportError‘ here. Maybee later.

4 Chapter 1. API

Altered States Documentation, Release 0

>>> import sys
>>> from altered import state, forget
>>> with(state(sys.modules, shutil=forget)):
... import shutil
Traceback (most recent call last):
KeyError: ’shutil’
>>> import shutil

Nested structure

>>> from altered import state, Expando
>>> ctx = Expando()
>>> idx = 0
>>> users = [Expando(name=’Foo’, get_token=lambda: ’xyz’)]
>>> @state(ctx, users=users)
... def token(idx):
... return ctx.users[idx].get_token()
>>> token(0)
’xyz’

1.2.2 Expando objects

Altered States also contains an optional feature called Expando objects. It’s a simple object that can be used to create
replacement structures easily. It’s basically an empty object that you can add any extra attributes to, with a conceptual
implementation along the lines of:

class Expando(object):
def __init__(self, *args, **kw):

self.__dict__.update(kw)

Full source is marginally more complex, see here. So if you need an object with another object embedded that has a
method you can create that with:

>>> from altered import Expando
>>> faked_ctx = Expando(user=Expando(get_name=lambda: ’Foo Bar’))
>>> faked_ctx.user.get_name()
’Foo Bar’

Using and Expando object with Altered States can look like this:

>>> from altered import Expando, state
>>> obj = Expando(a=1)
>>> @state(obj, a=3)
... def fn():
... return obj.a
>>> fn()
3

Expando classes are aliased to the name E if you’re seeking maximum terseness.

1.2.3 The state function

state(original[, change1=change1, changeN=changeN])
A ContextDecorator that takes original and applies the changes sent as parameters and modifies original with

1.2. alter/restore 5

https://github.com/Plexical/altered.states/blob/master/altered/base.py#L1

Altered States Documentation, Release 0

these parameters. Upon completion it will restore original to the state it was before being called. Parameters
can also have the marker value of forget to temporary remove this name when state() is in effect.

1.2.4 The alter function

alter(original[, change1=change1, changeN=changeN])
Modified original and applies the changes sent as parameters. Parameters can also have the marker value of
forget to temporary remove this name while the changes are in effect.

Returns a new function that will reverse the effect of itself.

1.2.5 forget

class forget
A marker class that is sent as the value of a parameter in a state() call to show that this symbol should be
taken out of the original object while the changed state are in effect.

6 Chapter 1. API

CHAPTER

TWO

MORE

• search

7

